
Software Development Contracts

Claudia Pons Gabriel Baum

LIFIA – Universidad Nacional de La Plata
50 esq.115. 1er Piso

CP 1900 Buenos Aires, Argentina
email: cpons@info.unlp.edu.ar

Abstract
While the notion of formal contract regulating the

behavior of software agents is accepted, the concept of
contract regulating the activities of software developers is
quite vague. In general there is not documented contract
establishing obligations and benefits of members of the
development team. However, a disciplined software
development methodology should encourage the use of
formal contracts between developers.

We propose to apply the notion of formal contract to
the object-oriented software development process itself.
That is to say, the software development process can be
seen as involving a number of agents (the development
team and the software artifacts) carrying out actions with
the goal of building a software system that meets the user
requirements. In this way, contracts can be used to reason
about correctness of the development process, and
comparing the capabilities of various groupings of agents
(coalitions) in order to accomplish a particular contract.

Keywords: object-oriented software development
process, process modeling, formal methods, refinement
calculus, contract.

1. Introduction

Object-oriented software development process (e.g.
The Unified Process [Jacobson et al., 1999], Catalysis
[D´Souza and Wills, 1998], Fusion [Coleman et al. 1994])
is a set of activities needed to transform user’s
requirements into a software system. A software
development process typically consists of a set of software
development artifacts together with a graph of tasks and
activities. Software artifacts are the products resulting
from software development, for example, a use case
model, a class model or source code. Tasks are small
behavioral units that usually results in a software artifact.
Examples of tasks are construction of a use case model,
construction of a class model and writing code. Activities
(or workflows) are units that are larger than a task.
Activities generally include several tasks and software
artifacts. Examples of activities are requirements, analysis,
design and implementation.

Modern software development processes are iterative
and incremental, they repeat over a series of iterations
making up the life cycle of a system. Each iteration takes

place over time and it consists of one pass through the
requirements, analysis, design, implementation and test
activities, building a number of different artifacts. All
these artifacts are not independent. They are related to
each other, they are semantically overlapping and together
represent the system as a whole. Elements in one artifact
have trace dependencies to other artifacts. For instance, a
use case (in the use-case model) can be traced to a
collaboration (in the design model) representing its
realization.

On the other hand, due to the incremental nature of the
process, each iteration results in an increment of artifacts
built in the former iteration. An increment is not
necessarily additive. Generally in the early phases of the
life cycle, a superficial artifact is replaced with a more
detailed or sophisticated one, but in later phases
increments are typically additive, i.e. a model is enriched
with new features, while previous features are preserved.

Figure 1 lists the classical activities – requirements,
analysis, design, implementation and test – in the vertical
axis and the iteration in the horizontal axis , showing the
following kinds of relations:

-horizontal relations between artifacts belonging to the
same activity in different iterations (a use case is
extended by another use case)

-vertical relations between artifacts belonging to the
same iteration in different activities (e.g. an analysis
model is realized by a design model).

Traditional specifications of development process
typically consist of quite informal descriptions of a set of
software development artifacts together with a graph of
tasks and activities. But, the software development
process should be formally defined since the lack of
accuracy in its definition can cause problems, for
example:

- Inconsistency among the different artifacts: if the
relation existing among the different sub-models is not
accurately specified, it is not possible to analyze whether
its integration is consistent or not.

- Evolution conflicts: when a artifact is modified,
unexpected behavior may occur in other artifacts that
depend on it.

- Confusion regarding the order in which tasks should
be carried out by developers.

- It is not possible to reason about the correctness of
the development process.

Figure 1. dimensions in the development process

We propose to apply the well-known mathematical
concept of contract to the description of software
development processes in order to introduce precision of
specification, avoiding ambiguities and inconsistencies,
and enabling developers to reason about the correctness of
their activities. Furthermore, development contracts are
organized in a modular and hierarchical way leading to a
better understanding of the whole software development
process.

2. The notion of software contract

A computation can generally be seen as involving a
number of agents (objects) carrying out actions according
to a document (specification, program) that has been laid
out in advance. This document represents a contract
between the agents involved. The notion of contract
regulating the behavior of a software system has been
already introduced by several authors [Helm et. al 90,
Meyer 91, Meyer 97, Back and von Wright, 98; Andrade
and Fiadeiro 99]. A contract imposes mutual obligations
and benefits. It protects both sides (the client and the
contractor):

- It protects the client by specifying how much should
be done: the client is entitled to receive a certain result.

- It protects the contractor by specifying how little is
acceptable: the contractor must not be liable for failing to
carry out tasks outside of the specified scope.

As example consider the contract in figure 2, in which
a subject object, containing some data, and a collection of
view objects, which represent the data graphically,
cooperate so that at all times each view always reflects the
current value of the subject. This contract defines the
behavioral composition of subject and views participants.
The contract specifies the following aspects: firstly, it
identifies type obligations, where the participant must
support certain external interface, and causal obligations,
where the participant must perform an ordered sequence
of actions and make certain conditions true in response to
these messages. Secondly, the contract defines invariants
that participants cooperate to maintain.

Figure 2: contract SubjectView [Helm et al, 90]

3. Software contracts as

mathematical entities

We take the view of contracts as proposed by [Back
and von Wright, 98] and [Back et al., 99]. The world that
a contract talks about is described as a state σ. The state
space Σ is the set of all possible states σ. The state is
observed as a collection of attributes x1, x2, ...,xn, each of
which can be observed and changed independently of the
others. Attributes are partitioned into objects

An agent changes the state by applying a function f to
the present state σ, yielding a new state f.σ. A function
f:Σ→ Σ that maps states to states is called state
transformer. An example of state transformer is the
assignment x:=exp, that updates the value of attribute x to
the value of the expression exp.

A boolean function p: Σ→Bool is called a state
predicate. A state relation R:Σ→ Σ→ Bool relates a state
σ to a state σ´ whenever R.σ.σ´holds.

Assume that there is a fixed collection A of agents. Let
a, b, c denote individual agents. We describe contracts
using the notation for contract statements [Back and von
Wright, 98]. The syntax for these is as follows:

S ::= 〈f〉  if p then S1 else S2 fi S1 ; S2 asserta p 
Ra  choicea S1 U S2  while p do S1 od

Here a stands for an agent while f stands for a state
transformer, p for a state predicate, and R for a state
relation, both expressed using higher­order logic.
Intuitively, a contract statement is executed as follows:

The functional update <f> changes the state according
to the state transformer f, i.e., if the initial state is σ0 then
the final state is f. σ0 . An assignment statement is a

contract SubjectView

Participants: Subject, View

 Subject supports [
data: Data

setData(val:Data) ÄDdata {data=val};notify()
notify() Ä 〈∀v:v∈views: v.update()〉
attachView(v:View) Ä {v∈views}
detachView(v:View) Ä {v∉views}]

 Views:Set(View) where each View supports [
update() Ä {view reflects subject.data}
setSubject(s:Subject)Ä {subject=s)}]

 invariant
subject.setData(val) Ä
 〈∀v∈views: v reflects subject.data〉

end contract

special kind of update where the state transformer is
expressed as an assignment. For example, the assignment
statement <x:=x+y> requires the agent to set the value of
attribute x to the sum of the values of attributes x and y.
The name skip is used for the identity update <id>, where
id.σ = σ for all states σ.

In the conditional composition if p then S1 else S2 fi,
S1 is carried out if p holds in the initial state, and S2

otherwise.
In the sequential composition S1 ; S2 , statement S1 is

first carried out, followed by S2.
An assertion asserta p , for example, asserta (x+y=0)

expresses that the sum of (the values of) x and y in the
state must be zero. If the assertion holds at the indicated
place when the agent a carries out the contract, then the
state is unchanged, and the rest of the contract is carried
out. If, on the other hand, the assertion does not hold, then
the agent has breached the contract.

The relational update and choice both introduce non-
determinism into the language of contracts. Both are
indexed by an agent which is responsible for deciding how
the non-determinism is resolved.

The relational update Ra requires the agent a to choose
a final state σ´ so that R.σ.σ´ is satisfied, where σ is the
initial state. In practice, the relation is expressed as a
relational assignment. For example, updatea {x := x´| x´
<x} expresses that the agent a is required to decrease the
value of the program variable x. If it is impossible for the
agent to satisfy this, then the agent has breached the
contract.

The statement choicea S1 U S2 allows agent a to choose
which is to be carried out, S1 or S2 .

Finally, recursive contract statements are allowed. A
recursive contract is defined using an equation of the form
X = S. where S may contain occurrences of the contract
variable X. With this definition, the contract X is
intuitively interpreted as the contract statement S, but with
each occurrence of statement variable X in S treated as a
recursive invocation of the whole contract S. Also it is
permitted the syntax (rec X•S) for the contract X defined
by the equation X=S. An important special case of
recursion is the while­loop which is defined in the usual
way: while p do S od =(rec X•if p then S ; X else skip fi)

3.1 Predicate transformer semantics
(Weakest preconditions)

In order to analyze a contract it is necessary to express the
precise meaning of each statement , i.e. we need the
semantics of contract statements. The semantics is given
within the refinement calculus using the weakest
precondition predicate transformer [Back and von
Wright, 98].

A predicate transformer is a function that maps
predicates to predicates. Predicate transformers are
ordered by pointwise extension of the ordering on
predicates, so F ⊆ F´ for predicate transformers holds if
and only if F.q ⊆ F´.q for all predicates q. The predicate

transformers form a complete lattice with this ordering,
and ∪ and ∩ are the operators of this lattice.

Different agents are unlikely to have the same goals,
and the way one agent makes its choices need not be
suitable for another agent. From the point of view of a
specific agent or a group of agents, it is therefore
interesting to know what outcomes are possible regardless
of how the other agents resolve their choices.

Consider the situation where the initial state σ is given
and a group of agents A agree that their common goal is to
use contract S to reach a final state in some set q of
desired final states. It is also acceptable that the coalition
is released from the contract, because some other agent
breaches the contract. This means that the agents should
strive to make their choices in such a way that the scenario
starting from σ ends in a configuration σ´, where either σ´
is an element in q, or some other agent has breached the
contract.

Assume that S is a contract statement and A a
coalition, i.e., a set of agents. We want the predicate
transformer wpA.S to map postcondition q to the set of all
initial states σ from which the agents in A jointly have a
winning strategy to reach the goal q. Thus, wpA.S.q is the
weakest precondition that guarantees that the agents in A
can cooperate to achieve postcondition q. This means that
a contract S for a coalition A is mathematically seen as an
element (denoted by wpA.S) of the domain PΣ →PΣ

These definitions are consistent with Dijkstra original
semantics for the language of guarded commands
[Dijkstra, 76] and with later extensions to it,
corresponding to non-deterministic assignments, choices,
and miracles.

The definition of the weakest precondition semantics
is as follows (see[Back and von Wright, 98] for a more
detailed explanation):

wpA.〈f〉.q =(λσ.q.(f.σ))
wpA.(if p then S1 else S2 fi).q =
 (p ∩ wpA.S1.q) ∪ (¬p ∩ wpA.S2.q)
wpA.(S1;S2).q = wpA.S1.(wpA.S2.q)
wpA.(asserta p).q = λσ.(p.σ ∧ q.σ), if a∈A

λσ.(¬p.σ ∨ q.σ),if a∉A
wpA.Ra.q = λσ.∃σ´• R.σ.σ´∧ q.σ´ , if a∈A

λσ.∀σ´• R.σ.σ´→ q.σ´ , if a∉A
wpA.(choicea S1 U S2).q = wpA.S1.q ∪ wpA.S2.q , if a∈A

wpA.S1.q ∩ wpA.S2.q , if a∉A

4. The notion of software

development contract

The notion of formal contract described in section 3,
can be applied to the software development process itself.
That is to say, the software development process can be
seen as involving a number of agents (the development
team and the software artifacts) who carry out actions with

the goal of building a software system that meets the user
requirements.

While the notion of formal contract regulating the
behavior of software agents is accepted, the concept of
contract regulating the activities of software developers is
quite vague. In general there is not documented contract
establishing obligations and benefits of members of the
development team. As we remarked in section 1, in the
best of the cases the development process is specified by
either graph of tasks or object-oriented diagrams in a
semi-formal style, while in most of the cases activities are
carried out on demand, with little previous planning.

However, a disciplined software development
methodology should encourage the existence of formal
contracts between developers, so that contracts can be
used to reason about correctness of the development
process, and comparing the capabilities of various
groupings of agents (coalitions) in order to accomplish a
particular contract.

Assume you are planning a work to be performed by a
development team in order to adapt the model of a system
to new requirements (e.g. during the n+1 iteration of the
development process). This work can be expressed as a
combination (in sequence or in parallel) of sub-works,
each of them to be performed by a member of the
development team. It is necessary to make sure that sub-
works will be performed as required. This is only possible
if the agreement is spelled out precisely in a contract
document. This idea is based on the metaphor: software
development is a sequence of documented contract
decisions.

A remarkable difference between software contracts
and development contracts is the kind of object
constituting a state. While in software contracts, objects in
the state represent object in a system, such as a bank
account or a book, in software development contracts,
objects in the state are development artifacts, such as a
class diagram or a use case. But this difference is just
conceptual, from the mathematical point of view we can
reason about development contracts in the standard way,
as if they were software contracts.

There are different levels of granularity in which
development contracts can be defined. On one hand we
have contracts regulating primitive evolution, such as
adding a single class in a Class diagram, while on the
other hand we have contracts defining complex evolution,
such as the realization of a use case in the analysis phase
by a collaboration diagram in the design phase, or the
reorganization of a complete class hierarchy. Complex
evolution are not atomic tasks, instead they are made up
with primitive evolutions. So, we start specifying atomic
contracts (contracts explaining primitive evolution) which
will be the building blocks for non-atomic contracts (i.e.
regulations for complex evolution).

4.1 Primitive development-contracts
In order to specify primitive development-contracts we

may associate a precondition and a postcondition with
each primitive evolution operation on models.

In order to make contracts more understandable and
extensible, we use the object-oriented approach to specify
them. The object oriented approach deals with the
complexity of description of software development
process better than the traditional approach. Examples of
this are the framework for describing UML compatible
development processes defined in [Hruby 99] and the
metamodel defined by the OMG Process Working Group
[OMG 98], among others. In the object-oriented approach,
software artifacts produced during the development
process are considered objects with methods and
attributes. Evolution during the software development
process is represented as collaborations between software
artifacts and users of the method.

We use the following object oriented syntax for
specifying classes of artifacts:

Specification of ClassName
Superclasses list of direct superclasses
Attributes

list of attributes and associations.
Derived Attributes

list of attributes and associations whose
values can be calculated from other attributes
or associations.

Predicates
 list of boolean functions

Invariants
 list of predicates that should be true in all

states.
Operations

 list of method declarations
End specification of ClassName

Where a method declaration has a name m, a
precondition p and an effect S (the body of the method).
When a method is called there is an agent a responsible
for the call. The method invocation is then interpreted as
´asserta p ; S´, i.e. the agent is responsible for verifying the
preconditions of the method. If agent a has invoked the
method in a state that does not satisfy the precondition,
then a has breached the contract.

At the present the Unified Modeling Language [UML,
2000] is considered the standard modeling language for
object oriented software development process. As
example, we present the evolution contracts of some UML
artifacts. Lets consider a part of the UML metamodel
describing Class, Feature, Package and Generalization
artifacts. The contract for some primitive operations on
these artifacts can be specified as follows (parts of the
specification are omitted due to space limitations):

Specification of GeneralizableElement
Superclasses ModelElement
Attributes

generalizations: Set of Generalization
specializations: Set of Generalization

isAbstract: Bool
Derived Attributes

[1] c.parents returns the set of direct parents of c.
parents: Set of GeneralizableElement
c.parents=c.generalizations.collect(parent)
[2] c.children returns the set of direct child of c.
children: Set of GeneralizableElement
c.children = c.specializations.collect(child)

Predicates
 IsA : GeneralizableElement x
GeneralizableElement →Bool
IsA(c,c1) ↔ c=c1 ∨ c1∈ c.allParents

Invariants ∀ c1,c2 : GeneralizableElement
 [1] Circular inheritance is not allowed.
 IsA(c1,c2) ∧IsA(c2 ,c1) → c2 = c1

End specification of GeneralizableElement

Specification of Classifier
Suplerclasses GeneralizableElement, NameSpace
Attributes

features: Seq of Feature
associationEnds: Set of AssociationEnd

Derived Attributes
[1] The operation allFeatures results in a Set
containing all Features of the Classifier itself and
all its inherited Features.
allFeatures : Set of Feature
c.allFeatures = c.features ∪ (∪ci∈c.parents

ci.allFeatures)
[2] The operation allAssociationEnds results in a
Set containing all AssociationEnds of the
Classifier itself and all its inherited
associationEnds.
allAssociationEnds: Set of AssociationEnd
c.allAssociationEnds= c.associationEnds ∪
(∪ci∈c.parents ci.allAssociationEnds)
[3] The operation oppositeAssociationEnds
results in a set of all AssociationEnds that are
opposite to the classifier.
...........

Invariants ∀c:Classifier
[1] No Attributes may have the same name within a
Classifier
∀f,g∈c.attributes (f.name=g.name →f=g)
[2] No Operations may have the same signature in a
Classifier.
∀f,g∈c.operations ((hasSameSignature(f,g) →f=g)

Operations
proc c.addFeature (f:Feature)
Precondition
[1] The class exists (it is stored in some package)
c.package≠null
[1] the new Feature does not belong to c
f∉ c.attributes
[2]No Features may have the same name within a

Classifier
∀g∈attributes(c) f.name≠ g.name
[3] The name of an Attribute cannot be the same
as the name of an opposite AssociationEnd.
∀e∈ c.oppositeAssociationEnds f.name≠e.name
[4] The connected type should be included in the
Package of the Classifier.
f.type∈ (c.package).allContents
Effect
[1] the feature is added to the list of features
c.features:=c.features∪{f} ; f.owner:=c

End specification of Class

Specification of Package
Superclasses NameSpace, GeneralizableElement
Attributes

importedElements: Set of ModelElement
ownedElements: Set of ModelElement

Derived Attributes
 [1] The operation contents results in a set
containing all ModelElements owned or imported
by the Package.
contents : Set of ModelElement
p.contents = p.ownedElements ∪
p.importedElements

Invariants ∀p: Package
[1] in a Package the Classifier names are unique
 ∀c1,c2: Classifier ((c1∈p.contents ∧ c2∈
p.contents ∧ c1.name = c2.name) → c1 =c2)

Operations
 proc p.addGeneralization (g:Generalization)
Precondition
[1] the generalization is not in the package
g∉p.allContents
[2] all elements connected by the new relationship
must be included in the Package.
g.parent∈p.allContents ∧ g.child∈p.allContents
[5] Circular inheritance.
 IsA(g.parent, g.child) → g.parent = g.child
[6] multiple inheritance.
∀c:Classifier (IsA(g.child,c) →
 ∀f,g:Feature((f∈ ((g.parent).allFeatures) ∧
g∈c.allFeatures ∧ f.name=g.name) → f=g))
Effect
[1] the generalization is inserted into the package
p.ownedElement::= p.ownedElement ∪ {g};
g.package:=p
[2] The new generalization is linked to the
generalizable elements
 g.parent.specializations :=
g.parent.specializations ∪ {g};
 g.child.generalizations := g.child.generalizations
∪ {g}
.........

End specification of Package

4.2 Complex development-contracts
On top of primitive contracts it is possible to define

complex contracts, specifying non-atomic forms of
evolution through the software development process.
Then, by using the wp predicate transformer we can verify
whether a set of agents (i.e. software developers) can
achieve their goal or not. We can analyze whether a
developer (or team of developers) can apply a group of
modifications on a model or not by means of a contract
designed in terms of a set of primitive operations
conforming the group.

Developers will successfully carry out the
modifications if some preconditions hold. We can
determine the weakest preconditions to achieve a goal by
computing:

wpA . C . Q
where C is the contract, A is the set of software

developers (agents) and Q is the goal.
If computing the wp we obtain a predicate different

from false, then we proved that with the contract the
developers can achieve their goal under certain pre-
conditions.

Example 1: a collaborative work

Lets consider a collaborative work, in which three
software developers have to modify a class diagram. One
of the agents will detect and delete all the features that
could be lifted to a superclass (i.e. features that appear
repeated in all of the subclasses of a given class). The
second agent has the responsibility of lifting the feature
(i.e. to add the deleted feature in the superclass). As a
consequence of the lifting process, some classes may
become empty (i.e. without proper features). Finally the
third agent will detect and delete empty classes. Figure 3
illustrates the collaborative process described above.

Figure 3: the collaborative refactoring task

We are interested in calculating the weakest
precondition for agents D1 , D2 and D3 to reach the goal Q
by using the contract R. That is to say:

 wp{D1,D2,D3} . R. Q
Where:

Def 1: the contract
R ≡ CONTRACT refactoring
agents D, D1, D2, D3

var p:Package, c:Class, f:Feature
proc liftingRepeatedFeature:
updateD1 c:=s ∃f:Feature • (∀c´∈s.subclasses •

 f∈c’.features) ;
updateD1 f:=f´  ∀c´∈ c.subclasses • f´∈ c’.features ;
while (∃c´∈c.subclasses • f∈c’.features)

do updateD1 c´:=c´´ c´´∈ c.subclasses ∧
 f∈c’’.features ;

 c´.deleteFeature(f)D1;
 od;
c.addFeature(f)D2 ;
end proc.

proc deletingEmptyClass:
updateD3 c:=c´  c’.features≠∅;
p.deleteClass(c)D3 ;
end proc.

begin
while (¬Q)
do choiceD liftingRepeatedFeature U

 deletingEmptyClass
od;
end.

Def 2: the postcondition
Q ≡ q1 ∧ q2

where:
q1 ≡ ∀c:Class • ¬∃f:Feature • (∀c´∈c.subclasses •

f∈c’.features)
q2 ≡ ∀c:Class • c.features≠∅

Q specifies the expected effect of the refactoring
process as the combination of two facts: q1 says that there
are no repeated features while q2 specifies that the model
does not contain any empty class.

Example 2: Using contracts to reasoning about
evolution conflicts

Arbitrary modifications that do not cause problems
when they are applied exclusively, may rise conflicts
when they are integrated (i.e. they are applied together).
For example if both evolutions - deleting a class and
adding a feature to the class- are applied sequentially a
conflict may occur because it is not possible to add a
feature to a missing class.

C ≡ CONTRACT conflict
agent D1, D2

var p:Package, c:Class, f:Feature;
begin
p.delClass(c)D1 ; c.addFeature(f)D2

end.

We can prove that wp{D1,D2} . C. Q is false. Where Q is
any predicate. It is impossible for agents D1 and D2 to
carry out the contract.

Example 3: checking consistency between artifacts

Lets consider a collaborative work in which two agents
D1 and D2 need to add a generalization relationship
respectively, preserving the well formedness property of
the model.

In particular, it is possible to find out which is the
weakest precondition to achieve the goal of introducing
two generalization relationships without breaking the
non-circularity principle of inheritance hierarchies by
computing:

wp{D1,D2} . C . Q
Where C is the contract between agents and Q is a

predicate that specifies absence of circularity in the
hierarchies and that the new relationships were
established.

We will calculate the weakest precondition for agents
D1 and D2 to reach the goal Q by using the contract C,
That is to say:

 wp{D1,D2} . C. Q = P
where:

• C ≡ CONTRACT circular
agents D1, D2
var p:Package, r,g:Generalization;
begin
p.addGeneralization(r)D1 ; p.addGeneralization(g)D2

end.

• Q ≡ q∧q´

Where q specifies the effect of the evolution
(generalizations were added in the package) and q´
specifies a well-formedness rule (there is no circular
inheritance).

q ≡ (r∈ p.ownedElements ∧ g ∈ p.ownedElements)
q´ ≡ ∀c1,c2 :GeneralizableElement. (IsA(c1,c2) ∧

IsA(c2 ,c1) → c2 = c1)

Finally, the expected weakest precondition is as
follows:

• P ≡ P1 ∧ P2 ∧ H
Where P1 an P2 specify preconditions for applying the

first and the second evolutions respectively (as if they
were applied in isolation). And H specifies a special
requirement to avoid circular inheritance in case both
evolution actions are applied together. P1 ≡

r∉p.allContents ∧ r.parent∈p.allContents ∧
r.child∈p.allContents ∧

IsA(r.parent, r.child) → r.parent = r.child
P2 ≡ g∉p.allContents ∧ g.parent∈p.allContents ∧

g.child∈p.allContents ∧
IsA(g.parent, g.child) → g.parent = g.child
H ≡ ¬ (IsA(g.parent, r.child) ∧ IsA(r.parent, g.child))

The complete derivation can be read in [Pons and
Baum, 2001] Figure 4 illustrate a conflictive case, in
which the expected weakest pre-condition does not hold.

Figure 4: evolution conflict

5. Conclusion and related work

Software development process is a collaborative
process. As a consequence it is necessary to formally
specify benefits and obligations of partners involved in the
process in order to avoid misunderstandings and conflicts.

We apply the well-known mathematical concept of
contract to the specification of software development
processes in order to introduce precision of specification,
avoiding ambiguities and inconsistencies, and enabling
developers to reason about the correctness of their joint
activities.

Contracts provide a formalization of software artifacts
and their relationships. Also contracts clearly establish pre
and post conditions for each software development
activity. The goal of the proposed formalism is to provide
foundations for tools that assist software engineers during
the development process.

In general there is not documented contract
establishing obligations and benefits of members of the
development team, i.e. software development processes
are specified in a semi-formal style. For example the
specification of the standard graphical modeling notation
UML [UML, 2000] and the Unified Process [Jacobson et
al., 99] is semi-formal, i.e. certain parts of it are specified
with well-defined languages while other parts are
described informally in natural language. There are an
important number of theoretical works giving a precise

A

B

A

B

A

B

A

B

D1

C

C

C

C

D2

D1 and D2D2 and D1

description of core concepts of the UML and providing
rules for analyzing their properties; see, for instance [Back
et al. 99; Breu et al., 1997; Evans et al., 1999; Kim and
Carrington, 1999; Övergaard 1999; Pons et al. 1999, Pons
et al 2000], while less effort has been dedicated to the
formalization of UML compatible software development
processes.

The mechanism of development contracts introduced
in this paper, is related to the mechanism of reuse
contracts [Steyaert et al. 96, Lucas 97]. A reuse contract
describes a set of interacting participants. Reuse contracts
can only be adapted by means of reuse operators that
record both the protocol between developers and users of
a reusable component and the relationship between
different versions of one component that has evolved.
Similarly, in [Mens et al. 2000] the authors translate the
idea of reuse contracts in order to cope with reuse and
evolution of UML models.

The originality of development contracts resides in the
fact that software developers are incorporated into the
formalism as agents (or coalition of agents) who make
decisions and have responsibilities. Given a specific goal
that a coalition of agents is requested to achieve , we can
use traditional correctness reasoning to show that the goal
can in fact be achieved by the coalition, regardless of how
the remaining agents act. The wp formalism allows us to
analyze a single contract from the point of view of
different coalitions and compare the results. For example,
it is possible to study whether a given coalition A would
gain anything by permitting an outside agent b to join A.

Finally, sine the construction of formal development
contracts is a hard task, it is important to consider
evolution and reuse of contracts themselves. As contracts
are written in an object-oriented style, it is possible to
define a new contract by specializing an existing one.
This feature does not solve the complexity problem
completely, but it facilitates the task of creation and
evolution of contracts.

References
Andrade,L and Fiadeiro,J.L, Interconecting objects via

Contracts. Proceedings of the UML´99 conference, Lecture
Notes in Computer Science 1723, Springer Verlag. (1999).

Back, R and von Wright, J., Refinement Calculus: A Systematic
Introduction, Graduate texts in Computer Science, Springer
Verlag, 1998.

Back, R. Petre L. and Porres Paltor I., Analysing UML Use
Cases as Contract. .Procs of the UML´99 conference,
Lecture Notes in Computer Science 1723, Springer. (1999).

Coleman, D..Arnols, P Bodoff,S, Dollin, C, Gilchrist,H,
Hayes,F, Jeremaes,P. Object Oriented Development: The
Fusion Method. Prentice-Hall 1994.

Dijkstra, E, A Discipline of Programming. Prentice Hall
International, 1976.

D´Souza D. and Wills, A. Objects, Components and Frameworks
with UML: the Catalysis approach, Addison Wesley, 1998.

Breu,R., Hinkel,U., Hofmann,C., Klein,C., Paech,B., Rumpe,B.
and Thurner,V., Towards a formalization of the unified
modeling language. ECOOP’97 procs., Lecture Notes in

Computer Science vol.1241, Springer, (1997).

Evans,A., France,R., Lano,K. and Rumpe,B., Towards a core
metamodelling semantics of UML, Behavioral specifications
of businesses and systems, H,Kilov editor, , Kluwer
Academic Publishers, (1999).

Helm,R. Holland,I and Gangopadhyay,D. Contracts: specifying
behavioral compositions in object-oriented systems, Proc.
OOPSLA'90. ACM Press. Oct 1990.

Hruby, Pavel, Framework for describing UML compatible
development processes. in <<UML>>´99 - The Unified
Modeling Language. Beyond the Standard. R.France and
B.Rumpe editors, Proceedings of the UML´99 conference,
Lecture Notes in Computer Science 1723, Springer Verlag.
(1999).

Jacobson, I..Booch, G Rumbaugh, J., The Unified Software
Development Process, Addison Wesley. ISBN 0-201-
57169-2 (1999)

Kim, S. and Carrington,D., Formalizing the UML Class
Diagrams using Object-Z, In Proc. <<UML>>´99 - The
Second International Conference on the Unified Modeling
Language, Lecture Notes in Computer Sciencie 1723,
(1999).

Lucas, Carine “Documenting Reuse and evolution with reuse
contracts”, PhD Dissertation, Programming Technology Lab,
Vrije Universiteit Brussel, September 1997.

Mens,T., Lucas,C. and D’Hondt, T.. Automating support for
software evolution in UML. Automated Software
Engineering Journal 7:1, Kluwer Academic Publishers,
February 2000.

Meyer, B. Advances in object oriented software engineering.
Chapter 1 “Design by contract”. Prentice Hall, 1992.

Meyer,B. Object-Oriented Software Construction, Second
Edition, Prentice Hall, 1997.

OMG White Paper on Analysis and Design Process
Engineering, Process Working Group, Analysis and Design
Platform Task Force, OMG Document. July 1998.

Övergaard, G., A formal approach to collaborations in the UML,
In Proc. <<UML>>´99 - The Second International
Conference on the Unified Modeling Language. R.France
and B.Rumpe editors, Lecture Notes in Computer Science
1723, Springer. (1999).

Pons,C., Baum,G., Felder,M., Foundations of Object-oriented
modeling notations in a dynamic logic framework,
Fundamentals of Information Systems, Chapter 1,
T.Polle,T.Ripke,K.Schewe Editors, Kluwer Academic
Publisher, 1999.

Pons, C., Giandini, R. and Baum, G. Specifying Relationships
between models through the software development process
Tenth International Workshop on Software Specification and
Design (IWSSD), California, IEEE Computer Society Press.
November 2000.

Pons,C and Baum G. Software Development Contracts, extended
version.In www-lifia.info.unlp.edu.ar/~cpons

Steyaert, P..Lucas, C.Mens K and D’Hondt, T. Reuse Contracts:
Managing the evolution of reusable assets. In proceedings of
OOPSLA’96, New York, Oct 1996.

UML, The Unified Modeling Language Specification –
Version 1.3,. UML Specification, revised by the OMG,
http://www.omg.org, March, 2000.

